Notebook from 2026 January 12th

Steven’s notebook from 2026 January 12th.
He decided to use a new notation to express the sumation of terms. Below includes the extracted info and the original hand writen notes


Basic Sums of Powers

Definition

We define a summation operator for a function f(x)f(x)f(x):S(f)=x=1nf(x)S(f) = \sum_{x=1}^{n} f(x)S(f)=x=1∑n​f(x)

Our goal is to compute sums of the form:x=1nxk\sum_{x=1}^{n} x^kx=1∑n​xk


1. Constant Function

S0=x=1n1=nS_0 = \sum_{x=1}^{n} 1 = nS0​=x=1∑n​1=n


2. Linear Function

S1=x=1nxS_1 = \sum_{x=1}^{n} xS1​=x=1∑n​x

The pairing trick

x=1nx=12x=1n(x+(n+1x))\sum_{x=1}^{n} x = \frac{1}{2} \sum_{x=1}^{n} \bigl(x + (n+1-x)\bigr)x=1∑n​x=21​x=1∑n​(x+(n+1−x))

Since each pair sums to n+1n+1n+1, we obtain:S1=n(n+1)2S_1 = \frac{n(n+1)}{2}S1​=2n(n+1)​


3. A Key Telescoping Identity

Consider the difference:xk(x1)kx^k – (x-1)^kxk−(x−1)k

Summing from x=1x = 1x=1 to nnn:x=1n(xk(x1)k)=nk\sum_{x=1}^{n} \bigl(x^k – (x-1)^k\bigr) = n^kx=1∑n​(xk−(x−1)k)=nk

This identity is the foundation of the method.


4. Binomial Expansion

Using the binomial theorem:(x1)k=i=0k(ki)xi(1)ki(x-1)^k = \sum_{i=0}^{k} \binom{k}{i} x^i (-1)^{k-i}(x−1)k=i=0∑k​(ik​)xi(−1)k−i

Therefore,xk(x1)k=i=0k1(ki)(1)kixix^k – (x-1)^k = -\sum_{i=0}^{k-1} \binom{k}{i} (-1)^{k-i} x^ixk−(x−1)k=−i=0∑k−1​(ik​)(−1)k−ixi


5. Recurrence Formula for Power Sums

Summing both sides and rearranging gives:x=1nxk=1k+1nk+1i=0k11k+1(k+1i)x=1nxi\sum_{x=1}^{n} x^k = \frac{1}{k+1} n^{k+1} – \sum_{i=0}^{k-1} \frac{1}{k+1} \binom{k+1}{i} \sum_{x=1}^{n} x^ix=1∑n​xk=k+11​nk+1−i=0∑k−1​k+11​(ik+1​)x=1∑n​xi

This expresses a power sum in terms of lower-degree sums.


6. Example: Sum of Squares

Let k=2k = 2k=2.x=1nx2=13n313((30)1+(31)x)\sum_{x=1}^{n} x^2 = \frac{1}{3} n^3 – \frac{1}{3} \left( \binom{3}{0} \sum 1 + \binom{3}{1} \sum x \right)x=1∑n​x2=31​n3−31​((03​)∑1+(13​)∑x)

Substituting known sums:=13n313(n+3n(n+1)2)= \frac{1}{3} n^3 – \frac{1}{3} \left( n + 3 \cdot \frac{n(n+1)}{2} \right)=31​n3−31​(n+3⋅2n(n+1)​)

Simplifying:x=1nx2=13n3+12n2+16n\sum_{x=1}^{n} x^2 = \frac{1}{3} n^3 + \frac{1}{2} n^2 + \frac{1}{6} nx=1∑n​x2=31​n3+21​n2+61​n

Which factors as:x=1nx2=n(n+1)(2n+1)6\sum_{x=1}^{n} x^2 = \frac{n(n+1)(2n+1)}{6}x=1∑n​x2=6n(n+1)(2n+1)​


7. Summary

  • Constant sums are linear in nnn
  • Linear sums are quadratic in nnn
  • Power sums satisfy a recursive formula
  • All polynomial sums can be derived using telescoping + binomial expansion

1 thought on “Notebook from 2026 January 12th”

Leave a Comment

Your email address will not be published. Required fields are marked *